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VIBRATION FREQUUENCIES OF A CIRCULAR CYLINDER

OF FINITE LENGTH IN AN INVISCID FUJJID

Introduction

The customary procedure for taking into account the effect of the

surrounding fluid on the vibration of a free-free beam is to increase the

magnitude of the mass per unit length of the beam by the added mass at each

section, considered as a two-dimensional form, with a correction factor for
the three-dimensiona*ty of the flow. In the present work there are compr ed,

\for a particular case, _e natural freiuencie s of vibration obtained by *
a re ton)p.a Mer

"Istrip-theory' procd.ure with t ve alues given by a more exact formulation

of the problem, in which the effect of the presence of the fluid is incorpo-

rated properly into the vibration equation. * For this purpose the flex-

ural vibration of a uniform circular cylinder of finite length vas selected

for study. k

General Procedure

The displacement of the beam in a mode of frequency cDo will be

assumed to be of the form

c(1)

in which z denotes distance along the axis of the cylinder, wnich extends

from z m -1 to z = 1 . The amplitude of the vibration, v(z) , is called

the displacement function of the beam. By differentiating (1) with respect

to time one obtains 0.)v(z) as the corresponding velocity function.

The velocity potential for the motion of the fluid, • , may simi-

larly be expressed in the form

-)od)'1 
(2)

in terms of cylindrical coordinates with origin at the center of the beam.

Both ý and satisfy Laplace s equation.

* Numbers in [ ] indicate references at end of this report.
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The maximm• kinetic energy of the beam is given by

I

where a is the radius of the cylinder and JS its density, assumed to be

a constant. For flexural vibrations the maximum potential fnergy V is [2]

1

alpsE Cq(4)

where E is the modulus of elasticity. Furthermore it will be seen that the

amplitude of the kinetic energy of the fluid due to the vibration of the beam

can also be expressed in terms of the displacement function in the form

where ef is the density of the fluid. Thus the amplitude of the total

kinetic energy is expressible in the form

T = T+T 2 if Jyc~fS (6)

where ( , i) is 'the Dirac delta function

If the .added-mass" function A(C ) n@re know£n, one could obtain

the vibration frequencies by the Rayleigh-Ritz method from the expressions for

V and T in (4) and (6). Because the solution of the potentialflow problem

is obtained from an integral equation which may be solved by the use of quad-

rature formulas, it was convenient to approximate the integrals for Ts and

V also by meýans of quadrature formulas. The potential and kinetic energies

are thus expressed as quadratic forms in a finite numbeý of terms from which

the natural frequencies of the body-fluid system can be obtained. as the eigen-

values of the potentials-energy matrix with respect to the total-energy matrix,



these matrices being composed of the coefficients of the respective quadratic

forms [I].

Quadratic Forms for V and T.

An unsuccessful initial attempt to solve the problem will first be

briefly described. A quadrature formula was used to replace the integral for

T in (1). Next the interpolation polynomial corresponding to the quadratureS

formula was differentiated twice. The resulting polynomial was squared and

a quadz'ature formula was then used to approximate the second integral. This

attempt was not successful, because the resulting quadratic form for the poten-

tial energy derived from the second integral was not positive definite. It is

believed that the difficulty was caused by the numerical approximation of

v"(•) , the second derivative of v(ý)

To avoid the numerical differentiation, it was decided to find a

suitable interpolation polynomial for v" ( ) and then by integration to obtain

an expression approximating v(s) . This is the procedure which iill now be

described in detail.

The conditions to be met by the interpolation polynomial, p(.) ,

are that it be equal to v" (C i at certain prescribed points, •j , and also

that it satisfy the same end conditions as the function v4B) For a free-

free beam - that is, one which is not restrained at either end o these condi-

tions are

1'" ý=tf_. '= o 0

Therefore, the conditions prescribed for p(b) are

(a) = =1

(b) = 0

(c)0

If



and

7T'- IT - 3

where the prime indicates differentiation with respect to g- in the right

member and omission of the factor with k = j in the left one, then the ex-

pression

ITZ)

satisfies condition (a) because at
d, 0IT (ý -h

where & i e 0 or i according as i ý j or i j

For an interpolation polynomial which does not include the end points

among the z, the end conditions may be satisfied by including a factor
0(2 - 1)2/(,3 2 - ) which reduces to unity when , and is zero when

Z + 1 Also, the first derivative is zero when t 1 The desired

interpolation polynomial will then be

pq-) I ~ _______ (10)

The next step is to determine an approximation, q( )l to v(Q) in

terms of the quantities d. This may be done by taking-

= cLtLV--r+C,+ C(

The polynomial p(u) may be taken in the form

if the coefficients of the polynomial ) are known, the
coefficients may be most easily found by synthetic division of IT by

Since , is a root of IT , the remainder should be zero, which serves as a
ý.7j



check. For instance, if the 3k are the Gaussian quadrature points; 1T will

be the Legendre polynomial of degree n with a leading coefficient of unity°

On combining all constant terms, one can write p(u) as

2 + " (12)

with

F p

Performing the integration indicated in (ll) gives

PI-5 2 jP+3

f(~~)~zZ* F1j- -a ____ Cý +)~ C% (3
S(p+A}p5) (P9-+ ? 3) p(P*+ 1)

and

C +C Q t7 Cr j CLý (14)

with

LU P~ Pj

and with

Pt3 pt/

L~p cp) ( " -a (p •Ct 3) +'

Mhe constants C1 and C2  are functions of the quantities d o

In order to evaluate them it will be assumed that the bar has (a) zero linear

momentum and (b) zero angular momentum. Condition (a) gives

j: ý -ý=1 (15)
Substituting (13) into the integral and evaluating it give

C2 - jZ•d•.f



where

It is assumed that n is even.

Using condition (b) of zero angular momentum gives

f (16)

and in a similar way C1 is found to be

C

where

Thus q(xi) can finally be expressed as

~ CL~aJ(17)

with

The potential energy of the beam (2) can now be expressed as a quad-

ratic form in the quantities di * Use of the interpolation polynomial ?( .)

to approximate v"(.) gives for the potential energy

Using a quadrature formula with quadrature points (j 1,,2,, n)

gives

since PQ.) d d. The quantities. Ri arYe the weighting factors, of the

quadrature formula. In matrix form V can be written as

V - - (-A)



with d a column matrix composed of the di and A a diagonal, n x n ,

matrix composed of the weights of the quadrature formula. The symbol T de-

notes the transpose of the matrix.

The kinetic energy of the beam is obtained from (3) by substituting

q(Q) for v(.) and applying a quadrature formula. The result is

j WPC~t2  -j< ZI Cý dt

with

B• LIT R, CC.• C
This expression can also be written in matrix form as

where'

BS (~Bjk)

For the kinetic energy of the fluid we have [3]

where the integration extends over the surface of the cylinder. In terms of

cylindrical coordinates this assumes the form

The potential is assumed to be due to an axial distribution of doublets

/k4) oriented in the direction @ V Tr/2. Thus. the velocity potential is

* - (21)

where 2 + (-
and

A =¢•co-s& 1 ,=yv"g O



At r- a we obtain then

in which R (0 + a2 , Also the boundary condition at the surface of

the cylinder yields

The kinetic energy of the fluid is then

The kinetic energy can hence be written as

T = ~ ~(23)

where

Since m( , ) is suall except in the neighborhood of w where

it rises to a sharp peak, it is 'desirable to reduce the rapid change in the

integrand in that neighborhood so that representation by a quadrature formula

is more accurate. This may be done by writing the expression as [4]

Substituting quadrature formulas for the integrals -with the exception of

C gives



with

and

The kinetic energy can be written as

where

In matrix form

Tjr = _ _ (25)

with

On the boundary of the solid, r a , we have from (22)

Hence, substituting for from (21), we obtain

SVQ)/M

and thus

C0) 3a (28)
0"



with

and.

The kinetic energy can be written as

where

In matrix form

r
r -P _ _ (25)

with P$

On the boundary of the solid, r a , we have from (22)

Hence, substituting for from (21), we obtain

and thus

0 0



This is the integral equation for the unknown distribution of doublets,

,g(t, t) . A solution to it will now be approximated by use of a quadra-

ture formula.

If a modification in the integrand is introduced as before, the

result is

with

Substitution of a quadrature formula for the first integral gives

ew R K jj - R5 K-, + (27)

in which

and

The relation between the velocity of the boundary and the doublet

distribution can be written more conveniently as

where

(R K,
and



and

~O~= -~(28)

Thus,

A- (29)

When (29) for is substituted into (25) for the kinetic energy,

the result is

But from (17) we have

"so that we obtain

with , ,H
•f cWH- C.

Thus, in summary for the potential energy we have

8

and for the kinetic energy, combining Tf and Tr , we have

T' - St._- __ (si)
where

To complete the analysis it is necessary to compute the frequencies

so that they can be. compared with those obtained by the two-dimensional



assumption. From a physical view, what has been done is to replace the contin-

uous cylindrical beam, a system with an infinite number of degrees of freedom,

by a system with n degrees of freedom, n being the number of ordinates

used for the auadrature formula. The partial differential equeation for the

beam vibration is then replaced by n ordinary differential equations. By

treating the quantities di as the amplitudes of a system of generalized coor-

dinates, one obtains the frequency determinant equation for the system [1)

A - -0(32)
where

(33)

E OLF

An alternative method which could be used to obtain (32) is the Rayleigh-Ritz

procedure. Th•e expressions for the potential and kinetic energies have been

"expressed as quadratic forms in terms of n unknown quantities, the di'

Since the sum V + T is constant for a free vibration of the system, we have

In this quadratic form, the coefficients di are to be chosen so that the

frequency is a minimum. Partial differentiation of (32) with respect to each

of the di yields dynamical equations from which (52) is again obtained.

A simple example will be worked to illustrate the method. If n = 2,

then .the Gaussian quadrature points are (-0.57735027, 0.57735027). The calcu-

lations for this case follow

735027. .57735

IL (.5702E

FP W 2.



(1.1250000 1,1250000\

1., S716 I,q q95 7.16I

(,1170731Z. .219OL04O00

f -. 155.357ViJ-)2

~j~~' j(2#7~)(2M5XiiA{4ý) Zt5(Mt2)2M

07o32!IBs27 07321L 18V?
\.0732)qB27 -. 0731,141927)

/ oo52T ej + fqa+O8I



As a check on the calculations, the frequencies of vibration will

be comýuted for a beam vibrating in vacuo. In this case

yFlcz C11ý 1

'• = I0"• -6,tos 3 J513. f}•

Since A I the problem is most easily solved for the inverse of

the eigenvalues which are related to the frequencies0 That is,

l- K =0
where

K=-

Thus,
ia.!6qxlcd -K -6,65695 •I0-4

-6.G,5G95x1C 3w YO 4

A convenient method of solving this determinant is first to add

the second column to the first, and then to subtract the second rovr from the

first. This gives

S0 - W'7 '•I-+Y, =

6.4500, 10"4-K 13-Q69I D-q 4, l-k

and then

K, = 0,-GL _± 4 /55 0.3 C7
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Comparable values are available from Timoshenko [2], where a solu-

tion for the one-dimensional flexural vibration of a free-free beam is given.

The fourth root of A here is comparable to the value given by Timoshenko.

Table I presents a comparison of -with the square of Timoshenko's value.

This value is proportional to Lo. the frequency as given by (36)

Table I - Comparison of Eigenvalues for Free-oFree Beam

Vibrating in Vacuo

Timoshenko Quadrature Method (n a 2)

1st mode 22-37 22.49

2nd mode 61.67 39.36

To include the effect of the fluid, it is first necessary to calcu-

late the matrix Bf . For this purpose the radius was taken to be a x 0.10.

The ratio of fluid density to solid density used was 0.365, which is repre-

sentative of aluminum in water.

(,, ,60.0000 .61476q665

-Yy~~~-. 1 71t _ _ _ _ _ _ _ _ _

74 9 71.o029 (2 A,=•

,vt

8W (oo,474 76:55

VVL fý +y3 ±



3 oe

64 ( 4 0600 5 -6000,00

8 -02A 131QLz1,

9 z q . 3I61,2

H~ -IRqq*5 Y\, +~



AH - 13 (.2'•t4&t75 %7Lq-st5cL5,lo- \

-H -1 ýq L V7/f5ý 9Y f)'

6: \ 571 cl i-i.q73?q

17,8o370 -q. 0 50 0 3

<-9..-05003 17,8370J

_-KAI= 0

A=i

l7.837OX×IO-4- K-.5o •l"

=0
-q,o50•o3• 1 1 7,3 8370 107' -k<

K, = 8,7869 x•',,t"4 k= 1138.05

Kz= 26 ,88 7o K i to- 371,92(



A comparison with values obtained using two-dimensional strip theory

can be made by dividing the values in Table I by V1 + ofv/os This comparison

is given in Table II.

Table II - Comparison of Eigenvalues for Free-Free "'e

Al•u-min-m Beam of Length-Diameter Ratio 10 Vibrat-
ing in Water

Strip Theory More Exact Theory

timoshenko Quadrature Method (n 2 2) Quadrature Method (n m 2)

1st mode 19 15 19.25 19.38

?nd mode 52.78 33.70 33.78

Considering that the system has been allowed only two degrees of

freedom (n B 2) , one sees that the agreement between the eigenvalues for the

first mode is remarkably good. In this mode the frequency given by the more

exact theory exceeds that by strip theory by 0.67 percent. The corresponding

three-dimensional correction factor obtained from a two-node vibration of a

spheroid of length-diameter ratio 10 [5] is 1.09, an increase in frequency of

9 percent. Calculations of the eigenvalues with larger values of n are pres-

ently under way, and it will not be clear whether the very small correction to

the frequencies given by strip theory is a valid one until this work is com-

pleted.
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